

SEMICONDUCTOR

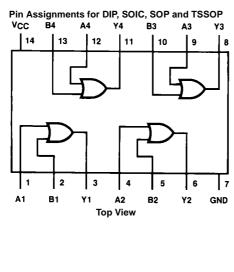
MM74HC32 Quad 2-Input OR Gate

General Description

The MM74HC32 OR gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs providing high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\mbox{\scriptsize CC}}$ and ground.

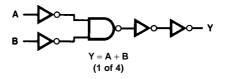
September 1983 Revised January 2005

Features


- Typical propagation delay: 10 ns
- Wide power supply range: 2–6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 μA maximum
- Fanout of 10 LS-TTL loads

Ordering Code:

Order Number Package Number		Package Description				
MM74HC32M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
MM74HC32MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
MM74HC32SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
MM74HC32MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
MM74HC32MTCX_NL		Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
MM74HC32N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
MM74HC32N_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				


Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

© 2005 Fairchild Semiconductor Corporation

Logic Diagram

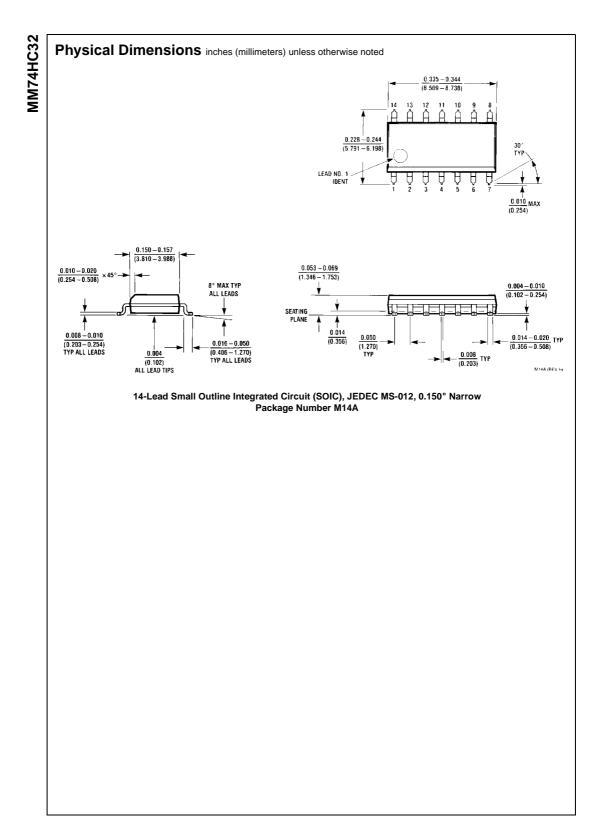
DS005132

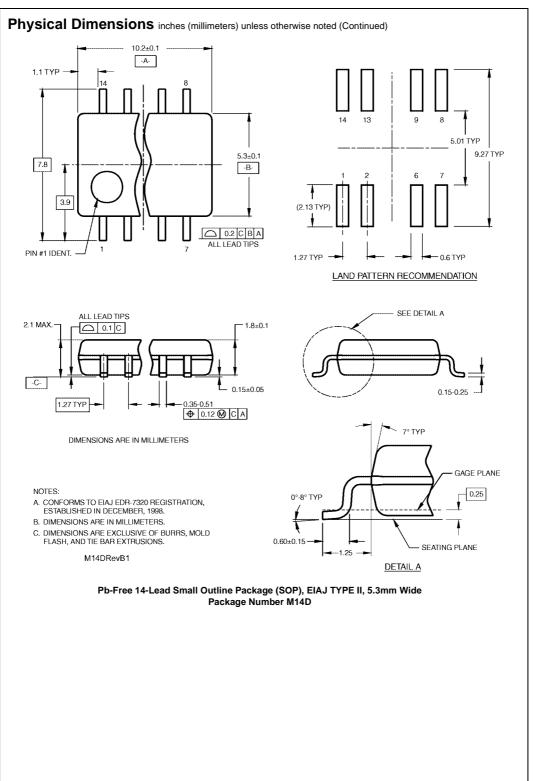
Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

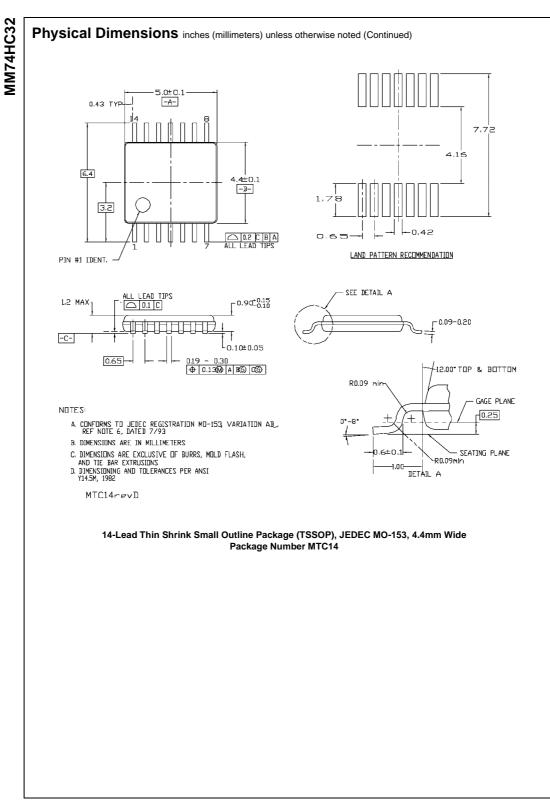
Supply Voltage (V _{CC})	-0.5 to + 7.0 V		Min	Max	Units	
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5 \text{V}$	Supply Voltage (V _{CC})	2	6	V	
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC}{+}0.5V$	DC Input or Output Voltage	0	V _{CC}	V	
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA	(V _{IN} , V _{OUT})				
DC Output Current, per pin (I _{OUT})	±25 mA	Operating Temperature Range (T _A)	-40	+85	°C	
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA	Input Rise or Fall Times				
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns	
Power Dissipation (P _D)		$V_{CC} = 4.5V$		500	ns	
(Note 3)	600 mW	$V_{CC} = 6.0V$		400	ns	
S.O. Package only	500 mW	Note 1: Absolute Maximum Ratings are those	e values t	beyond whi	ch dam-	
Lead Temperature (TL)		age to the device may occur.				
(Soldering 10 seconds)	260°C	Note 2: Unless otherwise specified all voltages are referenced to ground.				
,		Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.				

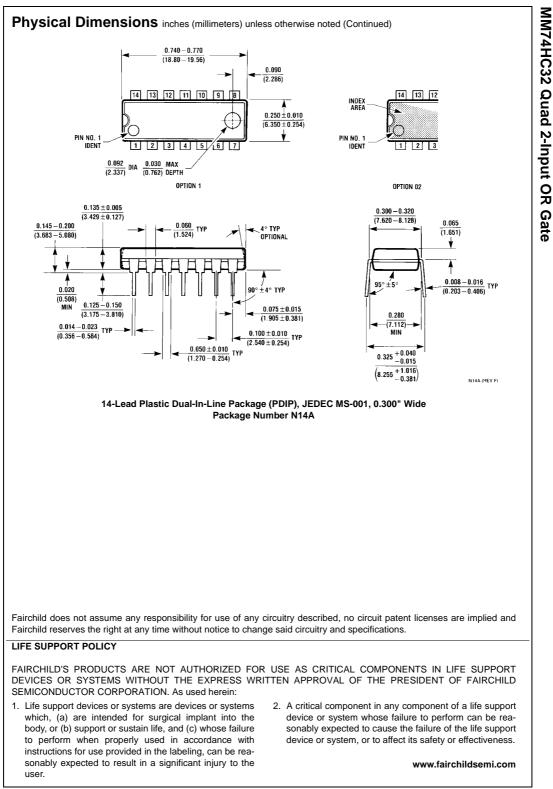
DC Electrical Characteristics (Note 4)


Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	Units
	Falameter		•cc	Тур	Gu	aranteed Limits	Units
VIH	Minimum HIGH Level		2.0V		1.5	1.5	V
Input Voltage		4.5V		3.15	3.15	V	
		6.0V		4.2	4.2	V	
VIL	Maximum LOW Level		2.0V		0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	V
			6.0V		1.8	1.8	V
V _{OH} Minimum HIGH Level Output Voltage	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	V
			4.5V	4.5	4.4	4.4	V
			6.0V	6.0	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		I _{OUT} ≤ 4.0 mA	4.5V	4.7	3.98	3.84	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.2	5.48	5.34	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IL}$					
Output Voltage	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	V
			4.5V	0	0.1	0.1	V
			6.0V	0	0.1	0.1	V
		$V_{IN} = V_{IL}$					
		I _{OUT} ≤ 4.0 mA	4.5V	0.2	0.26	0.33	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	μA
	Current						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$					


Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

Symbol	Parameter	Condi	tions	Ту		Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay			1	0	18	ns
AC EI	ectrical Charact	eristics					
		= 6 ns (unless otherwise specified		T△ =	25°C	C T _▲ = -40 to 85°C	
Symbol	Parameter	Conditions	V _{cc}	Тур	Gua	ranteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	30	100	125	ns
	Delay		4.5V	12	20	25	ns
			6.0V	9	17	21	ns
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	ns
	and Fall Time		4.5V	8	15	19	ns
			6.0V	7	13	16	ns
C _{PD}	Power Dissipation	(per gate)		50			pF
	Capacitance (Note 5)						
CIN	Maximum Input			5	10	10	pF
	Capacitance						


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.


MM74HC32

MM74HC32

